题目内容
如图,在平面直角坐标系中,抛物线可通过平移变换向__________得到抛物线,其对称轴与两段抛物线所围成的阴影部分(如图所示)的面积是__________.
在平面直角坐标系中,将三角形各点的横坐标都减去3,纵坐标保持不变,所得图形与原图相比( )
A. 向右平移了3个单位长度 B. 向左平移了3个单位长度
C. 向上平移了3个单位长度 D. 向下平移了3个单位长度
如图,已知的三个顶点的坐标分别为、、.
(1)请直接写出点关于轴对称的点的坐标;
(2)将绕坐标原点逆时针旋转90°.画出图形,直接写出点的对应点的坐标;
(3)请直接写出:以为顶点的平行四边形的第四个顶点的坐标.
一个平行四边形的两条对角线的长分别为8和10,则这个平行四边形边长不可能是( )
A. 2 B. 5 C. 8 D. 10
在一块长,宽为的矩形荒地上,要建造一个花园,要求花园面积是荒地面积的一半,下面分别是小华与小芳的设计方案.
()小芳说,‘我的设计方案如图所示,平行于荒地的四边建造矩形的花园,花园四周小路的宽度均相同’,你能帮小芳算出小路的宽度吗?请利用方程的方法计算出小路的宽度.
()小华说,‘我的设计方案是建造一个中心对称的四边形的花园,并且这个四边形的四个顶点分别在矩形荒地的四条边上’,请你按小华的思路,分别设计符合条件的一个菱形和一个矩形,在图和图中画出相应的草图,说明所画图形的特征,并简述所画图形符合要求的理由.
点关于原点对称的点的坐标为__________.
若二次函数的图像是开口向上的抛物线,则的取值范围是( ).
A. B. C. D.
下列描述一次函数y=-2x+5的图象及性质错误的是( )
A. y随x的增大而减小 B. 直线经过第一、二、四象限
C. 当x>0时,y<5 D. 直线与x轴交点坐标是(0,5)
我国三国时期数学家赵爽为了证明勾股定理,创造了一副“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形的边长为14,正方形的边长为2,且,则正方形的边长为__________.