题目内容
(1)分解因式:
(2)计算: (结果只保留正整数指数幂)
(3)计算:
如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为_____.
-的相反数的倒数是( )
A. - B. 2 C. -2 D.
若关于x的方程x2-x+cosα=0有两个相等的实数根,则锐角α为( ).
A. 30° B. 45° C. 60° D. 75°
(1)已知,如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE=BD+CE.
(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问结论DE=BD+CE是否成立?若成立,请你给出证明:若不成立,请说明理由.
-0.000003092用科学记数法表示,可记作_______________________.
如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是: ( )
A. 带①去 B. 带②去 C. 带③去 D. 带①和②
如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为_____cm2.
如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB的度数.