题目内容
(题文)已知x1 , x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=____.
已知a、b为有理数,且a<0,b>0,a+b<0,将四个数a、b、-a、-b按从小到大的顺序排列是__________
若有理数x、y满足|x|=7,|y|=4,且|x+y|=x+y,求x﹣y的值.
两个数的和为正数,则这两个数( )
A. 都为正数 B. 一个为正数,一个为负数
C. 一个为0,一个为正数 D. 至少有一个为正数
已知x1,x2 是关于x的一元二次方程x2-2(m+1)x+m2+5=0的两实数根.
(1)若(x1-1)(x2 -1)=28,求m的值;
(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.
若关于x的方程x2+6x+m=0的一个根为3﹣,求方程的另一个根及m的值.
如图,在中,,D是AB上的点,过点D作 交BC于点F,交AC的延长线于点E,连接CD,,则下列结论正确的有______ 将所有正确答案的序号都填在横线上
;;是等边三角形;若,则.
用简便方法计算:
(1)﹣13×﹣0.34×+×(﹣13)﹣×0.34
(2)(﹣﹣+﹣)×(﹣60)
阅读材料后解决问题:
小明遇到下面一个问题:
计算(2+1)(22+1)(24+1)(28+1).
经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)(22+1)(24+1)(28+1)
=(2+1)(2﹣1)(22+1)(24+1)(28+1)
=(22﹣1)(22+1)(24+1)(28+1)
=(24﹣1)(24+1)(28+1)
=(28﹣1)(28+1)
=216﹣1
请你根据小明解决问题的方法,试着解决以下的问题:
(1)(2+1)(22+1)(24+1)(28+1)(216+1)=_____.
(2)(3+1)(32+1)(34+1)(38+1)(316+1)=_____.
(3)化简:(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).