题目内容

【题目】如图AB是△ABC的外接圆⊙O的直径,过点C作⊙O的切线CM,延长BC到点D,使CD=BC,连接AD交CM于点E,若⊙OD半径为3,AE=5,

(1)求证:CM⊥AD;

(2)求线段CE的长.

【答案】(1)见解析;(2)

【解析】(1)连接OC,根据切线的性质和圆周角定理证得AC垂直平分BD,然后根据平行线的判定与性质证得结论;

(2)根据相似三角形的判定与性质证明求解即可.

证明:(1)连接OC

∵CM切⊙O于点C,

∴∠OCE=90°,

∵AB是⊙O的直径,

∴∠ACB=90°,

∵CD=BC,

∴AC垂直平分BD,

∴AB=AD,

∴∠B=∠D

∵∠B=∠OCB

∴∠D=∠OCB

∴OC∥AD

∴∠CED=∠OCE=90°

∴CM⊥AD.

(2)∵OA=OB,BC=CD

∴OC=AD

∴AD=6

∴DE=AD-AE=1

易证△CDE~△ACE

∴CE2=AE×DE

∴CE=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网