题目内容

如图所示,A,C是函数y=的图象上的任意两点,过A点作AB⊥x轴于点B,过C点作CD⊥y轴于点D,记△AOB的面积为S1,△COD的面积为S2,则( )

A.S1>S2
B.S1<S2
C.S1=S2
D.无法确定
【答案】分析:根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.
解答:解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.所以S1=S2=
故选C.
点评:主要考查了反比例函数中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网