题目内容
分析:过点F分别作AE、BC、AD的垂线FP、FM、FN,P、M、N为垂足.根据角平分线的性质可得FP=FM,FM=FN.进而得到FP=FN,故点F在∠DAE的平分线上.
解答:解:
过点F分别作AE、BC、AD的垂线FP、FM、FN,P、M、N为垂足,
∵CF是∠BCE的平分线,
∴FP=FM.
同理:FM=FN.
∴FP=FN.
∴点F在∠DAE的平分线上.
故选:B.
∵CF是∠BCE的平分线,
∴FP=FM.
同理:FM=FN.
∴FP=FN.
∴点F在∠DAE的平分线上.
故选:B.
点评:此题主要考查角平分线的性质定理和逆定理.关键是掌握角平分线的性质:角的平分线上的点到角的两边的距离相等.
练习册系列答案
相关题目