题目内容
在一个不透明的口袋里装有分别标有数字1,2,3三个小球,除数字不同外,其他没有任何区别,每次实验先搅拌均匀.
(1)求从袋中 摸出1个球上的数字为2的概率;
(2)若从中任取一球(不放回),再从中任取一球,请求出两个球上的数字之和为偶数的概率(用画树状图或列表格的方法)
(3)若按小题(2)摸球方式设计如下游戏:摸出的两个球上的数字之和为偶数则甲胜,否则乙胜,请问这种游戏方案设计对甲、乙双方公平吗?说明理由.
∴从袋中 摸出1个球上的数字为2的概率为:
(2)如图所示:
两个球上的数字之和为偶数的概率为:P=
(3)不公平.
甲摸出的两个球上的数字之和为偶数的概率为
乙摸出的两个球上的数字之和为奇数的概率为
因为
分析:(1)根据符合要求的只有一个,除以所有可能的情况即可得出;
(2)列举出所有可能,进而求出和为偶数的概率;
(3)计算出和为奇数与和为偶数的概率,即可得到游戏是否公平.
点评:本题考查了游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.
练习册系列答案
相关题目
在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球实验.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据
(1)请你估计,当n很大时,摸到白球的频率将会接近 (精确到0.1).
(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 .
(3)试估算口袋中黑、白两种颜色的球有多少只.
| 摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 | ||
| 摸到白球的次数m | 58 | 96 | 116 | 295 | 484 | 601 | ||
摸到白球的频率
|
0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(2)假如你去摸一次,你摸到白球的概率是
(3)试估算口袋中黑、白两种颜色的球有多少只.