题目内容
二次函数y=ax2+bx+c的图象如图所示,则下列结论:①abc<0,②b2-4ac>0,③2a+b>0,④a+b+c<0,⑤ax2+bx+c=-2的解为x=0,其中正确的有________.
②③④
分析:由抛物线开口向上,得到a大于0,再由对称轴在y轴右侧得到a与b异号,可得出b小于,由抛物线与y轴交于负半轴,得到c小于0,可得出abc大于0,判断出选项①错误;由抛物线与x轴交于两点,得到根的判别式大于0;利用对称轴公式表示出对称轴,由图象得到对称轴小于1,再由a大于0,利用不等式的基本性质变形即可得到2a+b的正负;由图象可得出当x=1时对应二次函数图象上的点在x轴下方,即将x=1代入二次函数解析式,得到a+b+c的正负;由图象可得出方程ax2+bx+c=-2的解有两个,不只是x=0,选项⑤错误.
解答:∵抛物线开口向上,对称轴在y轴右侧,且抛物线与y轴交于负半轴,
∴a>0,b<0,c<0,
∴abc>0,故选项①错误;
∵抛物线与x轴有两个交点,
∴b2-4ac>0,故选项②正确;
∵对称轴为直线x=-
<1,且a>0,
∴2a+b>0,故选项③正确;
由图象可得:当x=1时,对应的函数图象上的点在x轴下方,
∴将x=1代入得:y=a+b+c<0,故选项④正确;
由图象可得:方程ax2+bx+c=-2有两解,其中一个为x=0,故选项⑤错误,
综上,正确的选项有:②③④.
故答案为:②③④
点评:此题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c(a≠0),a的符合由抛物线的开口方向决定;b的符合由a的符合与对称轴的位置确定;c的符合由抛物线与y轴交点的位置确定;抛物线与x轴交点的个数决定了b2-4ac的与0的关系;此外还有注意对于x=1、-1、2等特殊点对应函数值正负的判断.
分析:由抛物线开口向上,得到a大于0,再由对称轴在y轴右侧得到a与b异号,可得出b小于,由抛物线与y轴交于负半轴,得到c小于0,可得出abc大于0,判断出选项①错误;由抛物线与x轴交于两点,得到根的判别式大于0;利用对称轴公式表示出对称轴,由图象得到对称轴小于1,再由a大于0,利用不等式的基本性质变形即可得到2a+b的正负;由图象可得出当x=1时对应二次函数图象上的点在x轴下方,即将x=1代入二次函数解析式,得到a+b+c的正负;由图象可得出方程ax2+bx+c=-2的解有两个,不只是x=0,选项⑤错误.
解答:∵抛物线开口向上,对称轴在y轴右侧,且抛物线与y轴交于负半轴,
∴a>0,b<0,c<0,
∴abc>0,故选项①错误;
∵抛物线与x轴有两个交点,
∴b2-4ac>0,故选项②正确;
∵对称轴为直线x=-
∴2a+b>0,故选项③正确;
由图象可得:当x=1时,对应的函数图象上的点在x轴下方,
∴将x=1代入得:y=a+b+c<0,故选项④正确;
由图象可得:方程ax2+bx+c=-2有两解,其中一个为x=0,故选项⑤错误,
综上,正确的选项有:②③④.
故答案为:②③④
点评:此题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c(a≠0),a的符合由抛物线的开口方向决定;b的符合由a的符合与对称轴的位置确定;c的符合由抛物线与y轴交点的位置确定;抛物线与x轴交点的个数决定了b2-4ac的与0的关系;此外还有注意对于x=1、-1、2等特殊点对应函数值正负的判断.
练习册系列答案
相关题目