题目内容
如图,为测量某塔AB的高度,在离塔底部10米处目测其塔顶A,仰角为60°,目高1.5米,则求该塔的高度为_______米。(参考数据: ≈1.41, ≈1.73)
计算:
(1)10﹣(﹣5)+(﹣9)+6
(2)(﹣2)3÷+6×(1﹣)+|﹣2|
已知数轴上A,B两点对应的数分别为a,b,且a,b满足|a+20|=﹣(b﹣13)2,点C对应的数为16,点D对应的数为﹣13.
(1)求a,b的值;
(2)点A,B沿数轴同时出发相向匀速运动,点A的速度为6个单位/秒,点B的速度为2个单位/秒,若t秒时点A到原点的距离和点B到原点的距离相等,求t的值;
(3)在(2)的条件下,点A,B从起始位置同时出发.当A点运动到点C时,迅速以原来的速度返回,到达出发点后,又折返向点C运动.B点运动至D点后停止运动,当B停止运动时点A也停止运动.求在此过程中,A,B两点同时到达的点在数轴上对应的数.
如果2x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)的值与x的取值无关,则﹣a﹣2b的值为( )
A. 3 B. 1 C. 2 D. ﹣2
如图,PA为⊙O的切线,A为切点。过A作OP的垂线AB,垂足为点C,交⊙O于点B。延长BO与⊙O交于点D,与PA的延长线交于点E。
(1)求证:PB为⊙O的切线;
(2)试探究线段AD、AB、CP之间的等量关系,并加以证明。
如图1,矩形ABCD的边AD在y轴上,抛物线经过点A、点B,与x轴交于点E、点F,且其顶点M在CD上。
(1)请直接写出下列各点的坐标:
A ,B ,C ,D ;
(2)若点P是抛物线上一动点(点P不与点A、点B重合),过点P作轴的平行线l与直线AB交于点G,与直线BD交于点H,如图2。
①当线段PH=2GH时,求点P的坐标;
②当点P在直线BD下方时,点K在直线BD上,且满足△KPH∽△AEF,求△KPH面积的最大值。
图1 图2 备用图
一个长100m宽60m 的游泳池扩建成一个周长为600 m的大型水上游乐场,把游泳池的长增加x m,那么x等于多少时,水上游乐场的面积为20000㎡?列出方程____________________,能否求出x的值___________(能或不能)。
关于的一元二次方程有实数根,则( )
A. <0 B. >0 C. ≥0 D. ≤0
把不等式的解集表示在数轴上,正确的是 ( )
A. B.
C. D.