题目内容
【题目】如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有( )个
![]()
A. 4 B. 3 C. 2 D. 1
【答案】A
【解析】解:∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.
∵△AEF等边三角形,
∴AE=EF=AF,∠EAF=60°.
∴∠BAE+∠DAF=30°.
在Rt△ABE和Rt△ADF中,
,
Rt△ABE≌Rt△ADF(HL),
∴BE=DF(故①正确).
∠BAE=∠DAF,
∴∠DAF+∠DAF=30°,
即∠DAF=15°(故②正确),
∵BC=CD,
∴BC﹣BE=CD﹣DF,即CE=CF,
∵AE=AF,
∴AC垂直平分EF.(故③正确).
设EC=x,由勾股定理,得
EF=x,CG=
x,
AG=AEsin60°=EFsin60°=2×CGsin60°=
x,
∴AC=
,
∴AB=
,
∴BE=
﹣x=
,
∴BE+DF=x﹣x≠x,(故④错误),
∵S△CEF=
,
S△ABE=
=
,
∴2S△ABE=
=S△CEF,(故⑤正确).
综上所述,正确的有4个,
故选:A.
![]()
练习册系列答案
相关题目