题目内容
如图,BC是半圆O的直径,P是BC延长线上一点,PA切⊙O于点A,∠B=30°.
![]()
(1)试问AB与AP是否相等?请说明理由.
(2)若PA=
,求半圆O的直径.
【答案】
(1)相等;(2)2
【解析】
试题分析:(1)连接OA,根据切线的性质可得∠PAO=90°,根据等边对等角可得∠OAB=∠B=30°,即可得到∠P=∠B,从而得到结果;
(2)根据∠APO的正切函数即可求得OA的长,从而可以求得结果.
(1)连接OA
![]()
则∠PAO=90°.
∵OA=OB,
∴∠OAB="∠B=30°,"
∴∠AOP=60°,∠P=90°-60°=30°,
∴∠P=∠B,
∴AB=AP;
(2)∵tan∠APO=
,
∴OA=PA,tan∠APO=
,
∴BC=2OA=2,即半圆O的直径为2.
考点:切线的性质,等腰三角形的性质和判定
点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.
练习册系列答案
相关题目