题目内容
如图,在△ABC中,∠C=60°,∠B=50°,D是BC上一点,DE⊥AB于点E,DF⊥AC于点F,则∠EDF的度数为
- A.90°
- B.100°
- C.110°
- D.120°
C
分析:由三角形内角和定理求得∠A=70°;由垂直的定义得到∠AED=∠AFD=90°;然后根据四边形内角和是360度进行求解.
解答:如图,∵在△ABC中,∠C=60°,∠B=50°,
∴∠A=70°.
∵DE⊥AB于点E,DF⊥AC于点F,
∴∠AED=∠AFD=90°,
∴∠EDF=360°-∠A-∠AED-∠AFD=110°.
故选:C.
点评:本题考查了直角三角形的性质.注意利用隐含在题中的已知条件:三角形内角和是180°、四边形的内角和是360°.
分析:由三角形内角和定理求得∠A=70°;由垂直的定义得到∠AED=∠AFD=90°;然后根据四边形内角和是360度进行求解.
解答:如图,∵在△ABC中,∠C=60°,∠B=50°,
∴∠A=70°.
∵DE⊥AB于点E,DF⊥AC于点F,
∴∠AED=∠AFD=90°,
∴∠EDF=360°-∠A-∠AED-∠AFD=110°.
故选:C.
点评:本题考查了直角三角形的性质.注意利用隐含在题中的已知条件:三角形内角和是180°、四边形的内角和是360°.
练习册系列答案
相关题目