题目内容
如图,△ABC中,,,AB=AC.
(1)求的度数;
(2)求证:BC=BD=AD.
如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行 海里与钓鱼岛A的距离最近?
如图,在等腰△ABC中,AB=AC,以B点为圆心,BC长为半径画弧,分别交AC、AB于D、E两点,并连接BD、DE.若∠A=20°,试求∠BDE的度数.
如图,下列条件中,不能证明的是( )
A.AB=DC,AC=DB
B.AC=DB,∠ACB=∠DBC
C.AB=DC,∠ACB=∠DBC
D.BO=CO,∠A=∠D
操作与探究
在Rt△ABC中,∠C=90°,AB=5,AC=3,点O是AB的中点,将一块直角三角板ODE的直角顶点绕点O旋转,边OD、OE分别与△ABC的边BC、AC交于点N、M.
(1)如图①,当三角板的一条直角边与AB重合时,点M与点A也重合,
①求此时CN的长;②写出AC2、CN2、BN2满足的数量关系:__________________;
图①
(2)当三角板旋转到如图②所示的位置时,即点M在AC上(不与A、C重合),
①猜想图②中AM2、BN2、MN2满足的数量关系:___________________________;
②说明你得出此结论的理由.
图②
(3)若在三角板旋转的过程中满足CM=CN,请你利用图③,求出此时BN的长.
图③
已知:如图,∠BAC的平分线与BC的垂直平分线相交于点P,PE⊥AB,PF⊥AC,垂足分别为E、F,若AB=8,AC=4,则AE= .
一直角三角形的两条直角边长分别为5、12,则斜边上的中线是 .
如图所示,正方形网格中,每个小正方形的边长为1个单位,以O为原点建立平面直角坐标系.圆心为A(3,0)的A被y轴截得的弦长BC=8.解答下列问题:
(1)⊙A的半径为 ;
(2)若将⊙A先向上平移2个单位,再向右平移3个单位得到⊙D,则⊙D的圆心D点的坐标是 ;⊙D与x轴的位置关系是 ;⊙D与y轴的位置关系是 ;
(3)若将⊙A沿着水平方向平移 个单位长度,⊙A即可与y轴相切.
A、B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程( )
A.
B.
C.
D.