题目内容
如图,A、B、C是⊙O上的三点,∠COB=64°,则∠CAB为
- A.26°
- B.32°
- C.64°
- D.128°
B
分析:圆心角∠BOC和圆周角∠BAC所对的弧相同,因此可直接用圆周角定理求解.
解答:∵∠COB与∠CAB是同弧所对的圆心角与圆周角,
∴∠CAB=
∠COB=
×64°=32°.
故选B.
点评:本题考查的是圆周角定理,即同弧所对的圆周角是圆心角的一半.
分析:圆心角∠BOC和圆周角∠BAC所对的弧相同,因此可直接用圆周角定理求解.
解答:∵∠COB与∠CAB是同弧所对的圆心角与圆周角,
∴∠CAB=
故选B.
点评:本题考查的是圆周角定理,即同弧所对的圆周角是圆心角的一半.
练习册系列答案
相关题目