题目内容

如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC,DE∥BC,那么在下列三角形中,与△EBD相似的三角形是


  1. A.
    △ABC
  2. B.
    △ADE
  3. C.
    △DAB
  4. D.
    △BDC
C
分析:由于∠A=36°,AB=AC,易求∠ABC=∠C=72°,而BD是角平分线,易求∠ABD=∠CBD=36°,又DE∥BC,那么有∠EDB=∠CBD=36°,即∠A=∠BDE,∠ABD=∠DBE,从而可证△ABD∽△DBE.
解答:如右图所示,
∵∠A=36°,AB=AC,
∴∠ABC=∠C=72°,
又∵BD是∠ABC的平分线,
∴∠ABD=∠CBD=36°,
∵DE∥BC,
∴∠EDB=∠CBD=36°,
即∠A=∠BDE,∠ABD=∠DBE,
∴△ABD∽△DBE,
故选C.
点评:本题考查了相似三角形的判定、等腰三角形的性质、三角形内角和定理.解题的关键是求出相关角的度数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网