题目内容
已知中,D、E分别是AB、AC边上的点,,点F是BC边上一点,联结AF交DE于点G,那么下列结论中一定正确的是()
A. ; B. ; C. ; D. .
如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )
A. 0.7米 B. 1.5米 C. 2.2米 D. 2.4米
如图,Rt△ABC中,∠ACB=90°,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的A处,若AO=OB=2,则阴影部分面积为( )
A. B. C. D.
如图,中,,,,点D是BC的中点,将沿AD翻折得到,联结CE,那么线段CE的长等于_______.
已知袋子中的球除颜色外均相同,其中红球有3个,如果从中随机摸得1个红球的概率为,那么袋子中共有_________个球.
8的相反数是( )
如图,在四边形OABC中,,点的坐标分别为,点D为AB上一点,且,双曲线经过点D,交BC于点E
求双曲线的解析式;
求四边形ODBE的面积.
【问题情景】利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.
例如:张老师给小聪提出这样一个问题:
如图1,在△ABC中,AB=3,AD=6,问△ABC的高AD与CE的比是多少?
小聪的计算思路是:
根据题意得:S△ABC=BC•AD=AB•CE.
从而得2AD=CE,∴
请运用上述材料中所积累的经验和方法解决下列问题:
(1)【类比探究】
如图2,在?ABCD中,点E、F分别在AD,CD上,且AF=CE,并相交于点O,连接BE、BF,
求证:BO平分角AOC.
(2)【探究延伸】
如图3,已知直线m∥n,点A、C是直线m上两点,点B、D是直线n上两点,点P是线段CD中点,且∠APB=90°,两平行线m、n间的距离为4.求证:PA•PB=2AB.
(3)【迁移应用】
如图4,E为AB边上一点,ED⊥AD,CE⊥CB,垂足分别为D,C,∠DAB=∠B,AB=,BC=2,AC=,又已知M、N分别为AE、BE的中点,连接DM、CN.求△DEM与△CEN的周长之和.
根据篮球比赛规则:赢一场得2分,输一场得1分,在某次中学生篮球联赛中,某球队赛了12场,赢了x场输了y场,得20分,则可以列出方程组( )