题目内容
如图,一次函数与反比例函数的图象相交于A,B两点,且与坐标轴的交点为,,点B的横坐标为,
(1)试确定反比例函数的解析式;
(2)求AOB的面积;
(3)直接写出不等式的解.
如图,边长为2的正方形ABCD中,点E是对角线BD上的一点,且BE=BC,点P在EC上,PM⊥BD于M,PN⊥BC于N,则PM+PN= ;
已知两圆相离,且它们的半径分别为方程的两根,那么它们的圆心距可能是( )
A. B.3 C. D.4
已知∠A为锐角,且,那么∠A的范围是 .
如图,抛物线交轴于A、B两点(A点在B点左侧),交轴于点C,已知B(8,0),,△ABC的面积为8.
(1)求抛物线的解析式;
(2)若动直线EF(EF∥轴)从点C开始,以每秒1个长度单位的速度沿轴负方向平移,且交轴、线段BC于E、F两点,动点P同时从点B出发,在线段OB上以每秒2个单位的速度向原点O运动。连结FP,设运动时间秒。当为何值时,的值最大,并求出最大值;
(3)在满足(2)的条件下,是否存在的值,使以P、B、F为顶点的三角形与△ABC相似。若存在,试求出的值;若不存在,请说明理由。
如图,把⊙O1向右平移8个单位长度得⊙O2,两圆相交于A.B,且O1A⊥O2A,则图中阴影部分的面积是( )
A.4π-8 B. 8π-16 C.16π-16 D. 16π-32
如图,在菱形ABCD中,AB=2cm,∠BAD=60°,E为CD边中点,点P从点A开始沿AC方向以每秒cm的速度运动,同时,点Q从点D出发沿DB方向以每秒1cm的速度运动,当点P到达点C时,P,Q同时停止运动,设运动的时间为x秒.
(1)当点P在线段AO上运动时.
①请用含x的代数式表示OP的长度;
②若记四边形PBEQ的面积为y,求y关于x的函数关系式(不要求写出自变量的取值范围);
(2)显然,当x=0时,四边形PBEQ即梯形ABED,请问,当P在线段AC的其他位置时,以P,B,E,Q为顶点的四边形能否成为梯形?若能,求出所有满足条件的x的值;若不能,请说明理由.
如图,在△ABD中,AC⊥BD,点C是BD的中点,则下列结论错误的是( )
A.AB=AD B.AB=BD C. ∠B=∠D D.AC平分∠BAD