题目内容
A、
| ||||||
B、
| ||||||
C、
| ||||||
D、
|
分析:在延长DC后,欲求DC,即DF-CF.而DF是直角三角形ADF的高,CF是等腰直角三角形ABC斜边上的高,根据题中条件,求出二者即可.
解答:
解:延长DC交AB于F
由题意易得,
∵AC=BC,
∴C在AB的垂直平分线上,
同理,D在AB的垂直平分线上,
∴CD是等边三角形ABD的角平分线,
所以∠ADC=30°,
则∠EDA=60°-30°=30°,
∵ED=DC,AD=AD,∠EDA=∠CDA=30°
∴△EDA≌△CDA
∴EA=AC=1
∴在等腰Rt△ABC中AB=
∴BF=CF=
,
在△ABD中tan∠BDF=tan30°=
,
∴DF=
,
∴DC=DF-CF=
.
故选D.
由题意易得,
∵AC=BC,
∴C在AB的垂直平分线上,
同理,D在AB的垂直平分线上,
∴CD是等边三角形ABD的角平分线,
所以∠ADC=30°,
则∠EDA=60°-30°=30°,
∵ED=DC,AD=AD,∠EDA=∠CDA=30°
∴△EDA≌△CDA
∴EA=AC=1
∴在等腰Rt△ABC中AB=
| 2 |
∴BF=CF=
| ||
| 2 |
在△ABD中tan∠BDF=tan30°=
| BF |
| DF |
∴DF=
| ||
| 2 |
∴DC=DF-CF=
| ||||
| 2 |
故选D.
点评:此题主要考查了等腰三角形、等边三角形和直角三角形的性质,综合利用了勾股定理和全等三角形的判定.
练习册系列答案
相关题目
①△DFE是等腰直角三角形;
②四边形CDFE不可能为正方形,
③DE长度的最小值为4;
④四边形CDFE的面积保持不变;
⑤△CDE面积的最大值为8.
其中正确的结论是( )
| A、①②③ | B、①④⑤ | C、①③④ | D、③④⑤ |