题目内容
分析:连接OA,OF,OE,由于∠BOA=∠FOA,∠FOE=∠COE,可推出△AOF∽△OEF,
=
=
,而EF=CE所以DE:AE=3:5.
| EF |
| FO |
| OF |
| FA |
| 1 |
| 2 |
解答:
解:连接OA,OF,OE;
∵由于∠BOA=∠FOA,∠FOE=∠COE,∠BOC=180°,
∴∠AOF+∠FOE=90°,
∵∠AOF+∠OAF=90°,∠FOE+∠FEO=90°,
∴△AOF∽△OEF,
∴
=
=
=
,
CE=EF=
,
DE:AE=3:5.
∵由于∠BOA=∠FOA,∠FOE=∠COE,∠BOC=180°,
∴∠AOF+∠FOE=90°,
∵∠AOF+∠OAF=90°,∠FOE+∠FEO=90°,
∴△AOF∽△OEF,
∴
| EF |
| FO |
| OF |
| FA |
| OB |
| BA |
| 1 |
| 2 |
CE=EF=
| 1 |
| 4 |
DE:AE=3:5.
点评:本题考查了圆的切线性质,注意三角形知识的利用.
练习册系列答案
相关题目