题目内容

已知半径为数学公式的⊙O中,弦AB=3,则弦AB所对圆周角的度数________.

60°或120°
分析:先根据题意画出图形,连接OA、OB,过O作OF⊥AB,由垂径可求出AF的长,根据特殊角的三角函数值可求出∠AOF的度数,由圆周角定理及圆内接四边形的性质即可求出答案.
解答:如图所示,
连接OA、OB,过O作OF⊥AB,则AF=AB,∠AOF=∠AOB,
∵OA=,AB=3,
∴AF=AB=×3=
∴sin∠AOF===
∴∠AOF=60°,
∴∠AOB=2∠AOF=120°,
∴∠ADB=∠AOB=×120°=60°,
∴∠AEB=180°-60°=120°.
故答案为:60°或120°.
点评:此题考查的是圆周角定理及垂径定理,解答此题时要注意一条弦所对的圆周角有两个,这两个角互为补角.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网