题目内容
已知△ABC的三个顶点坐标为A(0,1)、B(6,3)、C(3,0),将△ABC以坐标原点O为位似中心,以位似比3:1进行缩小,则缩小后的点B所对应的点的坐标为_________.
在平面直角坐标系中,点P(1,-3)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
(1)
(2)先化简,再求代数式的值,其中=3tan30°﹣2.
如图1,抛物线y=ax2+bx+5的图象过A(﹣1,0),B(5,0)两点,与y轴交于点C,作直线BC,动点P从点C出发,以每秒个单位长度的速度沿CB向点B运动,运动时间为t秒,当点P与点B重合时停止运动.
(1)求抛物线的表达式;
(2)如图2,当t=1时,若点Q是X轴上的一个动点,如果以Q,P,B为顶点的三角形与△ABC相似,求出Q点的坐标;
(3)如图3,过点P向x轴作垂线分别交x轴,抛物线于E、F两点.
①求PF的长度关于t的函数表达式,并求出PF的长度的最大值;
②连接BF,将△PBF沿BF折叠得到△P′BF,当t为何值时,四边形PFP′B是菱形?
已知:如图,在平行四边形ABCD和矩形ABEF中,AC与DF相交于点G.
(1) 试说明DF=CE;
(2) 若AC=BF=DF,求∠ACE的度数.
关于x的方程x2-3x+2=0的两根为x1,x2,则x1+x2的值为_____________.
若a<b,则下列式子中一定成立的是 ( )
A. a-3<b-3 B. > C. 3a>2b D. 3+a>3+b
某工厂去年的产值是a万元,今年比去年增加10%,今年的产值是__万元.
在直角坐标系中,已知点P是反比例函数(>0)图象上一个动点,以P为圆心的圆始终与轴相切,设切点为A.
(1)如图1,⊙P运动到与轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.
(2)如图2,⊙P运动到与轴相交,设交点为B,C.当四边形ABCP是菱形时:
①求出点A,B,C的坐标.
②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的.若存在,试求出所有满足条件的M点的坐标,若不存在,试说明理由.