搜索
题目内容
如图,OA,OB是⊙O的两条半径,点C是圆上一点,若∠ACB=32°,则∠AOB的度数为
64°
64°
.
试题答案
相关练习册答案
分析:
利用同弧所对的圆心角等于所对圆周角的2倍,即可求出所求角的度数.
解答:
解:∵∠AOB与∠ACB都对
AB
,∠ACB=32°,
∴∠AOB=2∠ACB=64°.
故答案为:64°.
点评:
此题考查了圆周角定理,熟练掌握圆周角定理是解本题的关键.
练习册系列答案
高中同步检测优化卷阶梯训练系列答案
高中同步阶梯训练示范卷系列答案
成功阶梯步步高系列答案
同步学习与辅导系列答案
超能学典各地期末试卷精选系列答案
水平测试系列答案
新学案系列答案
高考必刷题系列答案
同步训练高中阶梯训练示范卷系列答案
课堂夺冠100分系列答案
相关题目
如图,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点,BP的延长线交⊙O于点Q,过点Q的直线交OA延长线于点R,且RP=RQ
(1)求证:直线QR是⊙O的切线;
(2)若OP=PA=1,试求RQ的长.
如图,OA、OB是两条互相垂直的半径,且OA=4,C为OB的中点,以OB为直径作半圆,CP∥OA,交
AB
于点P,则图中阴影部分的面积为
.
16、如图,OA和OB是⊙O的半径,并且OA⊥OB.P是OA上的任意一点,BP的延长线交⊙O于点Q,点R在OA的延长线上,且RP=RQ.
(1)求证:RQ是⊙O的切线;
(2)求证:OB
2
=PB•PQ+OP
2
;
(3)当RA≤OA时,试确定∠B的取值范围.
如图,OA和OB是⊙O的半径,OB=2,OA⊥OB,P是OA上任一点,BP的延长线交⊙O于点Q,过点Q的⊙O的切线交OA延长线于点R.
(Ⅰ)求证:RP=RQ;
(Ⅱ)若OP=PQ,求PQ的长.
如图,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点,BP的延长线交⊙O于点Q,过点Q的直线交OA延长线于点R,且RP=RQ
求证:直线QR是⊙O的切线.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案