ÌâÄ¿ÄÚÈÝ
Èçͼ£¬Ö±Ïßl1£ºy=x+1ÓëÖ±Ïßl2£º
ÏཻÓÚµãP£¨-1£¬0£©£®Ö±Ïßl1ÓëyÖá½»ÓÚµãA£®Ò»¶¯µãC´ÓµãA³ö·¢£¬ÏÈÑØÆ½ÐÐÓÚxÖáµÄ·½ÏòÔ˶¯£¬µ½´ïÖ±Ïßl2ÉϵĵãB1´¦ºó£¬¸ÄΪ´¹Ö±ÓÚxÖáµÄ·½ÏòÔ˶¯£¬µ½´ïÖ±Ïßl1ÉϵĵãA1´¦ºó£¬ÔÙÑØÆ½ÐÐÓÚxÖáµÄ·½ÏòÔ˶¯£¬µ½´ïÖ±Ïßl2ÉϵĵãB2´¦ºó£¬ÓÖ¸ÄΪ´¹Ö±ÓÚxÖáµÄ·½ÏòÔ˶¯£¬µ½´ïÖ±Ïßl1ÉϵĵãA2´¦ºó£¬ÈÔÑØÆ½ÐÐÓÚxÖáµÄ·½ÏòÔ˶¯£¬¡Õմ˹æÂÉÔ˶¯£¬¶¯µãCÒÀ´Î¾¹ýµãB1£¬A1£¬B2£¬A2£¬B3£¬A3£¬¡£¬Bn£¬An£¬¡
Ôòµ±¶¯µãCµ½´ïAn´¦Ê±£¬Ô˶¯µÄ×Ü·¾¶µÄ³¤Îª
- A.n2
- B.2n-1
- C.2n-1+1
- D.2n+1-2
D
·ÖÎö£ºÓÉÖ±ÏßÖ±Ïßl1£ºy=x+1¿ÉÖª£¬A£¨0£¬1£©£¬ÔòB1×Ý×ø±êΪ1£¬´úÈëÖ±Ïßl2£ºy=
x+
ÖУ¬µÃB1£¨1£¬1£©£¬ÓÖA1¡¢B1ºá×ø±êÏàµÈ£¬¿ÉµÃA1£¨1£¬2£©£¬ÔòAB1=1£¬A1B1=2-1=1£¬¿ÉÅжϡ÷AA1B1ΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬ÀûÓÃÆ½ÐÐÏßµÄÐÔÖÊ£¬µÃ¡÷A1A2B2¡¢¡÷A2A3B3¡¢¡¡¢¶¼ÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬¸ù¾ÝƽÐÐÓÚxÖáµÄÖ±ÏßÉÏÁ½µã×Ý×ø±êÏàµÈ£¬Æ½ÐÐÓÚyÖáµÄÖ±ÏßÉÏÁ½µãºá×ø±êÏàµÈ£¬¼°Ö±Ïßl1¡¢l2µÄ½âÎöʽ£¬·Ö±ðÇóAB1+A1B1£¬A1B2+A2B2µÄ³¤£¬µÃ³öÒ»°ã¹æÂÉ£®
½â´ð£ºÓÉÖ±ÏßÖ±Ïßl1£ºy=x+1¿ÉÖª£¬A£¨0£¬1£©£¬¸ù¾ÝƽÐÐÓÚxÖáµÄÖ±ÏßÉÏÁ½µã×Ý×ø±êÏàµÈ£¬Æ½ÐÐÓÚyÖáµÄÖ±ÏßÉÏÁ½µãºá×ø±êÏàµÈ£¬¼°Ö±Ïßl1¡¢l2µÄ½âÎöʽ¿ÉÖª£¬B1£¨1£¬1£©£¬AB1=1£¬
A1£¨1£¬2£©£¬A1B1=2-1=1£¬AB1+A1B1=2£¬
B2£¨3£¬2£©£¬A2£¨3£¬4£©£¬A1B2=3-1=2£¬A2B2=4-2=2£¬A1B2+A2B2=2+2=4=22£¬
¡£¬
Óɴ˿ɵÃAn-1Bn+AnBn=2n£¬
ËùÒÔ£¬µ±¶¯µãCµ½´ïAn´¦Ê±£¬Ô˶¯µÄ×Ü·¾¶µÄ³¤Îª2+22+23+..+2n=2n+1-2£¬
¹ÊÑ¡D£®
µãÆÀ£º±¾Ì⿼²éÁËÒ»´Îº¯ÊýµÄ×ÛºÏÔËÓ㮹ؼüÊÇÀûÓÃÆ½ÐÐÓÚxÖáµÄÖ±ÏßÉϵãµÄ×Ý×ø±êÏàµÈ£¬Æ½ÐÐÓÚyÖáµÄÖ±ÏßÉϵãµÄºá×ø±êÏàµÈ£¬µÃ³öµãµÄ×ø±ê£¬ÅжϵÈÑüÖ±½ÇÈý½ÇÐΣ¬µÃ³öÒ»°ã¹æÂÉ£®
·ÖÎö£ºÓÉÖ±ÏßÖ±Ïßl1£ºy=x+1¿ÉÖª£¬A£¨0£¬1£©£¬ÔòB1×Ý×ø±êΪ1£¬´úÈëÖ±Ïßl2£ºy=
½â´ð£ºÓÉÖ±ÏßÖ±Ïßl1£ºy=x+1¿ÉÖª£¬A£¨0£¬1£©£¬¸ù¾ÝƽÐÐÓÚxÖáµÄÖ±ÏßÉÏÁ½µã×Ý×ø±êÏàµÈ£¬Æ½ÐÐÓÚyÖáµÄÖ±ÏßÉÏÁ½µãºá×ø±êÏàµÈ£¬¼°Ö±Ïßl1¡¢l2µÄ½âÎöʽ¿ÉÖª£¬B1£¨1£¬1£©£¬AB1=1£¬
A1£¨1£¬2£©£¬A1B1=2-1=1£¬AB1+A1B1=2£¬
B2£¨3£¬2£©£¬A2£¨3£¬4£©£¬A1B2=3-1=2£¬A2B2=4-2=2£¬A1B2+A2B2=2+2=4=22£¬
¡£¬
Óɴ˿ɵÃAn-1Bn+AnBn=2n£¬
ËùÒÔ£¬µ±¶¯µãCµ½´ïAn´¦Ê±£¬Ô˶¯µÄ×Ü·¾¶µÄ³¤Îª2+22+23+..+2n=2n+1-2£¬
¹ÊÑ¡D£®
µãÆÀ£º±¾Ì⿼²éÁËÒ»´Îº¯ÊýµÄ×ÛºÏÔËÓ㮹ؼüÊÇÀûÓÃÆ½ÐÐÓÚxÖáµÄÖ±ÏßÉϵãµÄ×Ý×ø±êÏàµÈ£¬Æ½ÐÐÓÚyÖáµÄÖ±ÏßÉϵãµÄºá×ø±êÏàµÈ£¬µÃ³öµãµÄ×ø±ê£¬ÅжϵÈÑüÖ±½ÇÈý½ÇÐΣ¬µÃ³öÒ»°ã¹æÂÉ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿