题目内容
分析:由DE∥BC,BF平分∠ABC,CF平分∠ACB可知,DB=DF,CE=EF.便可得出结论.
解答:解:∵BF平分∠ABC(已知),CF平分∠ACB(已知),
∴∠ABF=∠CBF,∠ACF=∠FCB;
又∵DE平行BC(已知)
∴∠DFB=∠FBC(两直线平行,内错角相等),∠EFC=∠FCB(两直线平行,内错角相等),
∴∠DBF=∠DFB,∠EFC=∠ECF(等量代换)
∴DF=DB,EF=EC(等角对等边)
∴DE=BD+CE.
∴∠ABF=∠CBF,∠ACF=∠FCB;
又∵DE平行BC(已知)
∴∠DFB=∠FBC(两直线平行,内错角相等),∠EFC=∠FCB(两直线平行,内错角相等),
∴∠DBF=∠DFB,∠EFC=∠ECF(等量代换)
∴DF=DB,EF=EC(等角对等边)
∴DE=BD+CE.
点评:此题考查学生对等腰三角形的判定与性质和平行线的性质的理解和掌握,主要利用等腰三角形两边相等.稍微有点难度是一道中档题.
练习册系列答案
相关题目