题目内容
如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于
- A.30°
- B.40°
- C.45°
- D.36°
D
分析:题中相等的边较多,且都是在同一个三角形中,因为求“角”的度数,将“等边”转化为有关的“等角”,充分运用“等边对等角”这一性质,再联系三角形内角和为180°求解此题.
解答:∵BD=AD
∴∠A=∠ABD
∵BD=BC
∴∠BDC=∠C
又∵∠BDC=∠A+∠ABD=2∠A
∴∠C=∠BDC=2∠A
∵AB=AC
∴∠ABC=∠C
又∵∠A+∠ABC+∠C=180°
∴∠A+2∠C=180°
把∠C=2∠A代入等式,得∠A+2•2∠A=180°
解得∠A=36°
故选D.
点评:本题反复运用了“等边对等角”,将已知的等边转化为有关角的关系,并联系三角形的内角和及三角形一个外角等于与它不相邻的两个内角的和的性质求解有关角的度数问题.
分析:题中相等的边较多,且都是在同一个三角形中,因为求“角”的度数,将“等边”转化为有关的“等角”,充分运用“等边对等角”这一性质,再联系三角形内角和为180°求解此题.
解答:∵BD=AD
∴∠A=∠ABD
∵BD=BC
∴∠BDC=∠C
又∵∠BDC=∠A+∠ABD=2∠A
∴∠C=∠BDC=2∠A
∵AB=AC
∴∠ABC=∠C
又∵∠A+∠ABC+∠C=180°
∴∠A+2∠C=180°
把∠C=2∠A代入等式,得∠A+2•2∠A=180°
解得∠A=36°
故选D.
点评:本题反复运用了“等边对等角”,将已知的等边转化为有关角的关系,并联系三角形的内角和及三角形一个外角等于与它不相邻的两个内角的和的性质求解有关角的度数问题.
练习册系列答案
相关题目