题目内容

【题目】你会对多项式(x2+5x+2)(x2+5x+3)12分解因式吗?对结构较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),能使复杂的问题简单化、明朗化.从换元的个数看,有一元代换、二元代换等.

对于(x2+5x+2)(x2+5x+3)12

解法一:设x2+5xy

则原式=(y+2)(y+3)12y2+5y6(y+6)(y1)

(x2+5x+6)(x2+5x1)(x+2)(x+3)(x2+5x1)

解法二:设x2+5x+2y

则原式=y(y+1)12y2+y12(y+4)(y3)

(x2+5x+6)(x2+5x1)(x+2)(x+3)(x2+5x1)

解法三:设x2+2m5xn

则原式=(m+n)(m+n+1)12(m+n)2+(m+n)12(m+n+4)(m+n3)

(x2+5x+6)(x2+5x1)(x+2)(x+3)(x2+5x1)

按照上面介绍的方法对下列多项式分解因式:

(1)(x2+x4)(x2+x+3)+10

(2)(x+1)(x+2)(x+3)(x+6)+x2

(3)(x+y2xy)(x+y2)+(xy1)2

【答案】1 (x+2)(x-1) ( +1)

(2)()2

(3) (x+y-xy-1)2

【解析】

1)令m=,原式=因式分解即可;

2=()()+,n=,再将原式=n+2n+x2进行因式分解即可;

3)令a=x+y,b=xy,代入原式即可因式分解.

1)令m=,

原式=

=m2-m-2=(m-2)(m+1)

= ( -2)( +1)

=(x+2)(x-1) ( +1)

(2)=()()+,

n=

原式=n+2n+x2=n2+2n+x2

=(n+x)2=()2

(3) a=x+y,b=xy,原式=

=(a-b)2-2(a-b)+1

=(a-b-1)2

=(x+y-xy-1)2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网