题目内容
计算与求值:
(1)计算:-2-1-(π+2009)0÷
(2)先化简,再求值:(
-
)÷
,其中a=
.
(1)计算:-2-1-(π+2009)0÷
| 9 |
(2)先化简,再求值:(
| 3a |
| a-1 |
| a |
| a+1 |
| a |
| a2-1 |
| 1 | ||
|
分析:(1)根据有理数的负整数指数次幂等于正整数指数次幂的倒数,任何非0数的0次幂等于1,算术平方根的定义进行计算即可得解;
(2)先把括号内的分式通分并进行同分母的分式相加减,把括号外面的分式分母分解因式并把除法转化为乘法运算,再把a分母有理化并代入化简后的分式进行计算即可.
(2)先把括号内的分式通分并进行同分母的分式相加减,把括号外面的分式分母分解因式并把除法转化为乘法运算,再把a分母有理化并代入化简后的分式进行计算即可.
解答:解:(1)-2-1-(π+2009)0÷
,
=-
-1÷3,
=-
-
,
=-
;
(2)(
-
)÷
,
=
×
,
=
×
,
=2(a+2),
∵a=
=
=
-1,
∴当a=
-1时,原式=2(
-1+2)=2
+2.
| 9 |
=-
| 1 |
| 2 |
=-
| 1 |
| 2 |
| 1 |
| 3 |
=-
| 5 |
| 6 |
(2)(
| 3a |
| a-1 |
| a |
| a+1 |
| a |
| a2-1 |
=
| a(3a+3-a+1) |
| (a-1)(a+1) |
| (a+1)(a-1) |
| a |
=
| 2a(a+2) |
| (a-1)(a+1) |
| (a+1)(a-1) |
| a |
=2(a+2),
∵a=
| 1 | ||
|
| ||||
(
|
| 2 |
∴当a=
| 2 |
| 2 |
| 2 |
点评:本题考查了分式的化简求值,解题的关键是把分式化到最简,然后代值计算,注意把a分母有理化.
练习册系列答案
相关题目