题目内容
【题目】如图,直线AB与CD相交于点O, ∠AOM=90°,
![]()
(1)如图1,若OC平分∠AOM.求∠AOD的度数;
(2)如图2,若∠BOC=4∠NOB,且OM平分∠NOC,求∠MON的度数;
【答案】(1)∠AOD=135°;(2)∠MON=54°.
【解析】试题分析:(1)根据角平分线的定义求出∠AOC=45°,然后根据邻补角的定义求解即可;
(2)设∠NOB=x°,∠BOC=4x°,根据角平分线的定义表示出∠COM=∠MON=
∠CON,再根据∠BOM列出方程求解x,然后求解即可.
(1)∵∠AOM=90°,OC平分∠AOM,∴∠AOC=
∠AOM=
x90°=45°,
∵∠AOC+∠AOD=180°,∴∠AOD=180°-∠AOC=180°-45°=135°;
(2)∵∠BOC=4∠NOB,设∠NOB=x°,∠BOC=4x°,
∴∠CON=∠COB-∠BON=4x°-x°=3x°,∵OM平分∠CON,
∴∠COM=∠MON=
∠CON=
x°,∵∠BOM=
x+x=90,∴x=36,
∴∠MON=
x°=54°,即∠MON的度数为54°.
【题目】每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82;八年级10名学生的竞赛成绩在C组中的数据是:94,90,94.
七、八年级抽取的学生竞赛成绩统计表
年级 | 七年级 | 八年级 |
平均数 | 92 | 92 |
中位数 | 93 | b |
众数 | c | 100 |
方差 | 52 | 50.4 |
根据以上信息,解答下列问题:
(1)直接写出上述图表中a,b,c的值;
(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);
(3)该校七、八年级共720人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≥90)的学生人数是多少?
![]()