题目内容
如图,在平面直角坐标系中,已知点P(0,4),点A在线段OP上,点B在x轴正半轴上,且AP=OB=t, 0<t<4,以AB为边在第一象限内作正方形ABCD;过点C、D依次向x轴、y轴作垂线,垂足为M,N,设过O,C两点的抛物线为y=ax2+bx+c.
(1)填空:△AOB≌△ ≌△BMC(不需证明);用含t的代数式表示A点纵坐标:A(0, ;
(2)求点C的坐标,并用含a,t的代数式表示b;
(3)当t=1时,连接OD,若此时抛物线与线段OD只有唯一的公共点O,求a的取值范围;
(4)当抛物线开口向上,对称轴是直线
,顶点随着t的增大向上移动时,求t的取值范围.

(1)填空:△AOB≌△ ≌△BMC(不需证明);用含t的代数式表示A点纵坐标:A(0, ;
(2)求点C的坐标,并用含a,t的代数式表示b;
(3)当t=1时,连接OD,若此时抛物线与线段OD只有唯一的公共点O,求a的取值范围;
(4)当抛物线开口向上,对称轴是直线
(1)DNA或△DPA;
;(2)C(4,t),
;(3)a>0或a<
或
<a<0;(4)
0<t≤
.
0<t≤
试题分析:(1)根据全等三角形的判定定理SAS证得:△AOB≌△DNA或DPA≌△BMC;根据图中相关线段间的和差关系来求点A的坐标:
∵∠DNA=∠AOB=90°,∴∠NAD=∠OBA(同角的余角相等).
在△AOB与△DNA中,∵
同理△DNA≌△BMC.
∵点P(0,4),AP=t,∴
(2)利用(1)中的全等三角形的对应边相等易推知:OM=OB+BM=t+
(3)利用待定系数法求得直线OD的解析式
对于抛物线的开口方向进行分类讨论,即a>0和a<0两种情况下的a的取值范围.
(4)根据抛物线的解析式
试题解析:解:(1)DNA或△DPA;
(2)由题意知,NA=OB=t,则OA=
∵△AOB≌△BMC,∴CM="OB=t." ∴OM=OB+BM=t+
又抛物线y=ax2+bx+c过点O、C,
∴
(3)当t=1时,抛物线为
∵△AOB≌△DNA,∴DN=OA=3.
∵D(3,4),∴直线OD为:
联立方程组,得
解得,x=0或
所以,抛物线与直线OD总有两个交点.
讨论:①当a>0时,
②当a<0时,若
若
综上所述,a的取值范围是a>0或a<
(4)∵抛物线为
又∵对称轴是直线x=
∴顶点坐标为:
∵抛物线开口向上,且随着t的增大,抛物线的顶点向上移动,
∴只与顶点坐标有关,∴t的取值范围为:0<t≤
练习册系列答案
相关题目