题目内容
求证:∠A=2∠H.
分析:先根据三角形外角的性质得出∠ACD=∠ABC+∠A,∠2=∠1+∠H,再由CH是外角∠ACD的平分线,BH是∠ABC的平分线得出∠1=
∠ABC,∠2=
∠ACD,故∠A=∠ACD-∠ABC=2(∠2-∠1),∠H=∠2-∠1,由此即可得出结论.
| 1 |
| 2 |
| 1 |
| 2 |
解答:证明:∵∠ACD是△ABC的一个外角,
∴∠ACD=∠ABC+∠A,
∵∠2是△BCH的一个外角,
∴∠2=∠1+∠H,
∵CH是外角∠ACD的平分线,BH是∠ABC的平分线,
∴∠1=
∠ABC,∠2=
∠ACD,
∴∠A=∠ACD-∠ABC=2(∠2-∠1),而∠H=∠2-∠1,
∴∠A=2∠H.
∴∠ACD=∠ABC+∠A,
∵∠2是△BCH的一个外角,
∴∠2=∠1+∠H,
∵CH是外角∠ACD的平分线,BH是∠ABC的平分线,
∴∠1=
| 1 |
| 2 |
| 1 |
| 2 |
∴∠A=∠ACD-∠ABC=2(∠2-∠1),而∠H=∠2-∠1,
∴∠A=2∠H.
点评:本题考查的是三角形内角和定理及三角形外角的性质,熟知三角形的内角和等于180°是解答此题的关键.
练习册系列答案
相关题目