题目内容

如图,矩形ABCD中,AB=2,BC=1,E是DC上的一点,∠DAE=∠BAC,则EC长为   
【答案】分析:由∠DAE=∠BAC,可得AD=DE,可得△ADE∽△ABC,根据相似三角形的性质就可求出DE的长,再由EC=DC-DE可求EC.
解答:解:矩形ABCD中,DC=AB=2
AD=BC=1
又∵∠DAE=∠BAC,∠D=∠B
∴△ADE∽△ABC
∴AB:AD=BC:DE
∴DE=
∴EC=DC-DE=
点评:本题考查的是相似三角形的判定和性质,相似三角形的对应边成比例.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网