题目内容
【题目】⊙O的半径为5cm,两条弦AB∥CD,AB=8cm、CD=6cm,则两条弦之间的距离为 .
【答案】1cm或7cm.
【解析】
试题分析:此题分为两种情况:两条平行弦在圆心的同侧或两条平行弦在圆心的两侧.根据垂径定理分别求得两条弦的弦心距,进一步求得两条平行弦间的距离.
解:如图所示,连接OA,OC.作直线EF⊥AB于E,交CD于F,则EF⊥CD.
∵OE⊥AB,OF⊥CD,
∴AE=
AB=4cm,CF=
CD=3cm.
根据勾股定理,得
OE=
=3cm;OF=
=4cm,
①当AB和CD在圆心的同侧时,如图1,则EF=OF﹣OE=1cm;
②当AB和CD在圆心的两侧时,如图2,则EF=OE+OF=7cm;
则AB与CD间的距离为1cm或7cm.
故答案为1cm或7cm.
![]()
练习册系列答案
相关题目
【题目】在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
摸球的次数n | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次数m | 63 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的频率 | 0.63 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)请估计:当实验次数为10000次时,摸到白球的频率将会接近 ;(精确到0.1)
(2)假如你摸一次,你摸到白球的概率P(摸到白球)= ;
(3)如何通过增加或减少这个不透明盒子内球的具体数量,使得在这个盒子里每次摸到白球的概率为0.5?