题目内容
如图,在?ABCD中,E、F为对角线BD上的两点,且∠BAE=∠DCF.求证:BE=DF.
证明:∵四边形ABCD是平行四边形,
∴AB=CD,∠ABE=∠CDF,
又已知∠BAE=∠DCF,
∴△ABE≌△DCF,
∴BE=DF.
分析:先由平行四边形的性质得出AB=CD,∠ABE=∠CDF,再加上已知∠BAE=∠DCF可推出△ABE≌△DCF,得证.
点评:此题考查的知识点是平行四边形的性质与全等三角形的判定和性质,关键是证明BE和DF所在的三角形全等.
∴AB=CD,∠ABE=∠CDF,
又已知∠BAE=∠DCF,
∴△ABE≌△DCF,
∴BE=DF.
分析:先由平行四边形的性质得出AB=CD,∠ABE=∠CDF,再加上已知∠BAE=∠DCF可推出△ABE≌△DCF,得证.
点评:此题考查的知识点是平行四边形的性质与全等三角形的判定和性质,关键是证明BE和DF所在的三角形全等.
练习册系列答案
相关题目