题目内容

二次函数y=x2+x+1,∵b2-4ac=________,∴函数图象与x轴________交点.

-3    没有
分析:根据b2-4ac与零的关系即可判断出二次函数y=x2+x+1的图象与x轴交点的个数.
解答:令y=0,则x2+x+1=0.
∵△=b2-4ac=12-4×1×1=-3<0,
∴二次函数的图象与x轴没有交点.
故答案是:-3;没有.
点评:本题考查了抛物线与x轴的交点.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.
△=b2-4ac决定抛物线与x轴的交点个数.
△=b2-4ac>0时,抛物线与x轴有2个交点;
△=b2-4ac=0时,抛物线与x轴有1个交点;
△=b2-4ac<0时,抛物线与x轴没有交点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网