题目内容
下列统计中,适合全面调查的是:
A.检测某城市的空气质量
B.调查全国初中生的视力情况
C.审查某篇文章中的错别字
D.调查央视“新闻联播”的收视率
(13分)已知:直线l1与直线l2平行,且它们之间的距离为2,A、B是直线l1上的两个定点,C、D是直线l2上的两个动点(点C在点D的左侧),AB=CD=5,连接AC、BD、BC,将△ABC沿BC折叠得到△A1BC.
(1)求四边形ABDC的面积.
(2)当A1与D重合时,四边形ABDC是什么特殊四边形,为什么?
(3)当A1与D不重合时
①连接A1、D,求证:A1D∥BC;
②若以A1,B,C,D为顶点的四边形为矩形,且矩形的边长分别为a,b,求(a+b)2的值.
计算:(x+1)(x-2)= .
定义运算:对于任意实数、,都有=,等式右边是通常的加法、减法、及乘法运算,比如:25=2×(2-5)+1=2×(-3)+1=-6+1=-5.若3的值小于13,求的取值范围,并在如图所示的数轴上表示出来.
甲、乙仓库共存粮450吨,现从甲仓库运出存粮的60%,从乙仓库运出存粮的40%,结果乙仓库所存的粮食比甲仓库所存的粮食多30吨.若设甲仓库原来存粮吨,乙仓库原来存粮吨,则有:
A.
B.
C.
D.
(14分)(2015•本溪)如图,抛物线y=ax2+bx(a≠0)经过点A(2,0),点B(3,3),BC⊥x轴于点C,连接OB,等腰直角三角形DEF的斜边EF在x轴上,点E的坐标为(﹣4,0),点F与原点重合
(1)求抛物线的解析式并直接写出它的对称轴;
(2)△DEF以每秒1个单位长度的速度沿x轴正方向移动,运动时间为t秒,当点D落在BC边上时停止运动,设△DEF与△OBC的重叠部分的面积为S,求出S关于t的函数关系式;
(3)点P是抛物线对称轴上一点,当△ABP时直角三角形时,请直接写出所有符合条件的点P坐标.
(10分)(2015•本溪)先化简,再求值:(x﹣2+)÷,其中x=(π﹣2015)0﹣+.
(3分)(2015•本溪)如图是由多个完全相同的小正方体组成的几何体,其左视图是( )
如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是 .