题目内容

(2013•顺义区一模)如图,已知△ABC,以AC为直径的⊙O交AB于点D,点E为
AD
的中点,连结CE交AB于点F,且BF=BC.
(1)判断直线BC与⊙O的位置关系,并证明你的结论;
(2)若⊙O的半径为2,cosB=
3
5
,求CE的长.
分析:(1)连接AE,求出∠EAD+∠AFE=90°,推出∠BCE=∠BFC,∠EAD=∠ACE,求出∠BCE+∠ACE=90°,根据切线的判定推出即可.
(2)根据AC=4,cosB=
3
5
=
BC
AB
求出BC=3,AB=5,BF=3,AF=2,根据∠EAD=∠ACE,∠E=∠E证△AEF∽△CEA,推出EC=2EA,设EA=x,EC=2x,由勾股定理得出x2+4x2=16,求出即可.
解答:(1)BC与⊙O相切
证明:连接AE,
∵AC是⊙O的直径
∴∠E=90°,
∴∠EAD+∠AFE=90°,
∵BF=BC,
∴∠BCE=∠BFC,
∵E为弧AD中点,
∴∠EAD=∠ACE,
∴∠BCE+∠ACE=90°,
∴AC⊥BC,
∵AC为直径,
∴BC是⊙O的切线.

(2)∵⊙O的半为2
∴AC=4,
∵cosB=
3
5
=
BC
AB

∴BC=3,AB=5,
∴BF=3,AF=5-3=2,
∵∠EAD=∠ACE,∠E=∠E,
∴△AEF∽△CEA,
EA
EC
=
AF
AC
=
1
2

∴EC=2EA,
设EA=x,EC=2x,
由勾股定理得:x2+4x2=16,
x=
4
5
5
(负数舍去),
即CE=
8
5
5
点评:本题考查了切线的判定,等腰三角形的性质,勾股定理,相似三角形的性质和判定的应用,主要考查学生的推理能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网