题目内容

精英家教网如图,矩形EFGD的边EF在△ABC的BC边上,顶点D、G分别在边AB、AC上、已知AB=AC=5,BC=6,设BE=x,S矩形EFGD=y.
(1)求y关于x的函数解析式,并写出自变量x的取值范围;
(2)连接EG,当△GEC为等腰三角形时,求y的值.
分析:(1)易证得△BDE≌△CGF,则BE=FC=x,那么EF=6-2x;可过A作BC的垂线,设垂足为M,根据等腰三角形三线合一的性质,可求得BM、CM的长,进而由勾股定理求得AM的长;易知△CGF∽△CAM,通过相似三角形的成比例线段即可求得GF的表达式,根据矩形的面积即可得到y、x的函数关系式;
(2)Rt△EFG中,由勾股定理可求出EG的表达式;同理可在Rt△CFG中得到CG的表达式;
由于△GEC的腰和底不确定,所以要分三种情况讨论:
①CE=CG,②EG=EC,③CG=GE;
根据上述三种情况得出的三个不同的关于x的方程,即可求得x的值,再将其代入(1)的函数关系式中,即可求得y的值.(需注意x的值应符合(1)的自变量的取值范围)
解答:精英家教网解:(1)过A作AM⊥BC于M;
Rt△AMC中,
∵AB=AC,AM⊥BC,
∴CM=
1
2
BC=3,AC=5;
由勾股定理,得AM=
AC2-CM2
=4;
∵AB=AC,
∴∠B=∠C;
∵四边形DEFG是矩形,
∴∠DEB=∠GFC=90°,DE=FG;
∴△DEB≌△GFC;
∴BE=FC=x;
易知GF∥AM,则△CFG∽△CMA;
CF
CM
=
GF
AM
,即GF=CF•AM÷CM=
4
3
x;
∴y=(6-2x)×
4
3
x=-
8
3
x2+8x;(0<x<3)

(2)Rt△EFG中,FG=
4
3
x,EF=6-2x,则EG2=
16
9
x2+(6-2x)2=
52
9
x2-24x+36;
Rt△CGF中,易知CG=
5
3
x,即CG2=
25
9
x2
EC=6-x,则EC2=(6-x)2=36-12x+x2
①当EG=CG时,EF=FC,即6-2x=x,x=2;此时y=(6-2x)×
4
3
x=
16
3

②当EG=CE时,EG2=CE2,即
52
9
x2-24x+36=36-12x+x2,解得x=0(舍去),x=
108
43

此时y=(6-2x)×
4
3
x=
6048
1849

③当CG=CE时,CG2=CE2,即
25
9
x2=36-12x+x2,解得x=
9
4
,x=-9(舍去);
此时y=(6-2x)×
4
3
x=
9
2

故当△CEG是等腰三角形时,y的值为:
16
3
6048
1849
9
2
点评:此题主要考查了等腰三角形的性质、矩形的性质,相似三角形的判定和性质等知识的综合应用能力,还考查了分类讨论的数学思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网