题目内容
【题目】如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是 .
![]()
【答案】
【解析】
试题解析:如图1,过E作PQ⊥DC,交DC于P,交AB于Q,连接BE,
![]()
∵DC∥AB,
∴PQ⊥AB,
∵四边形ABCD是正方形,
∴∠ACD=45°,
∴△PEC是等腰直角三角形,
∴PE=PC,
设PC=x,则PE=x,PD=4﹣x,EQ=4﹣x,
∴PD=EQ,
∵∠DPE=∠EQF=90°,∠PED=∠EFQ,
∴△DPE≌△EQF,
∴DE=EF,
易证明△DEC≌△BEC,
∴DE=BE,
∴EF=BE,
∵EQ⊥FB,
∴FQ=BQ=
BF,
∵AB=4,F是AB的中点,
∴BF=2,
∴FQ=BQ=PE=1,
∴CE=
,
Rt△DAF中,DF=
,
∵DE=EF,DE⊥EF,
∴△DEF是等腰直角三角形,
∴DE=EF=
,
∴PD=
=3,
如图2,
![]()
∵DC∥AB,
∴△DGC∽△FGA,
∴
,
∴CG=2AG,DG=2FG,
∴FG=
,
∵AC=
,
∴CG=
,
∴EG=
,
连接GM、GN,交EF于H,
∵∠GFE=45°,
∴△GHF是等腰直角三角形,
∴GH=FH=
,
∴EH=EF﹣FH=
,
∴∠NDE=∠AEF,
∴tan∠NDE=tan∠AEF=
,
∴
,
∴EN=
,
∴NH=EH﹣EN=
,
Rt△GNH中,GN=
,
由折叠得:MN=GN,EM=EG,
∴△EMN的周长=EN+MN+EM=
.
练习册系列答案
相关题目