题目内容
【题目】甲、乙两人进行羽毛球比赛,把球看成点,其飞行的路线为抛物线的一部分.如图建立平面直角坐标系,甲在O点正上方1m的P处发球,羽毛球飞行的高度y(m)与羽毛球距离甲站立位置(点O)的水平距离x(m)之间满足函败表达式y=a(x﹣4)2+h.已知点O与球网的水平距离为5m,球网的高度为1.55m,球场边界距点O的水平距离为10m.
(1)当a=﹣
时,求h的值,并通过计算判断此球能否过网.
(2)若甲发球过网后,乙在另一侧距球网水平距离lm处起跳扣球没有成功,球在距球网水平距离lm,离地面高度2.2m处飞过,通过计算判断此球会不会出界?
![]()
【答案】(1)球能过网;(2)此球不会出界.
【解析】
(1)①将点P(0,1)代入y=﹣
(x-4)2+h即可求得h;②求出x=5时,y的值,与1.55比较即可得出判断;
(2)将(0,1)、(6,2.2)代入y=a(x-4)2+h代入即可求得a、h,得出关系式,求出x=10时,y的值比较即可判断
(1)当a=﹣
时,y=﹣
(x﹣4)2+h,
将点P(0,1)代入得:1=﹣
(﹣4)2+h,
解得:h=
,
∴y=﹣
(x﹣4)2+
,
当x=5时,y=﹣
×(5﹣4)2+
=
,
∵
=1.75>1.55,
∴球能过网.
(2)由题意知,球过P(0,1)、(6,2.2)两点,
则
,
解得:
,
所以y=﹣
(x﹣4)2+
,
当x=10时,y=﹣
(10﹣4)2+
=﹣1<0,
∴此球不会出界.
【题目】在不透明的袋子中有四张标有数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏。
小明画出树形图如下:
![]()
小华列出表格如下:
第一次 第二次 | 1 | 2 | 3 | 4 |
1 | (1,1) | (2,1) | (3,1) | (4,1) |
2 | (1,2) | (2,2) | ① | (4,2) |
3 | (1,3) | (2,3) | (3,3) | (4,3) |
4 | (1,4) | (2,4) | (3,4) | (4,4) |
回答下列问题:
(1)根据小明画出的树形图分析,他的游戏规则是:随机抽出一张卡片后 (填“放回”或“不放回”),再随机抽出一张卡片;
(2)根据小华的游戏规则,表格中①表示的有序数对为 ;
(3)规定两次抽到的数字之和为奇数的获胜,你认为淮获胜的可能性大?为什么?