题目内容
已知二次函数y=ax2+bx+c的图象如图,并设M=|a+b+c|-|a-b+c|+|2a+b|-|2a-b|,则( )

| A.M>0 |
| B.M=0 |
| C.M<0 |
| D.不能确定M为正、为负或为0 |
由图可知a>0,c<0,
对称轴0<-
<1,则b<0,可得2a+b>0,2a-b>0,
当x=1时,a+b+c<0,当x=-1时,a-b+c>0,
且由图可看出|a+b+c|<|a-b+c|,
∴M=|a+b+c|-|a-b+c|+|2a+b|-|2a-b|<0.
故选C.
对称轴0<-
| b |
| 2a |
当x=1时,a+b+c<0,当x=-1时,a-b+c>0,
且由图可看出|a+b+c|<|a-b+c|,
∴M=|a+b+c|-|a-b+c|+|2a+b|-|2a-b|<0.
故选C.
练习册系列答案
相关题目