题目内容
分析:在△ABC中,利用三角形内角定理易求∠B+∠C,再根据线段垂直平分线的性质易求∠1=∠B,同理可得∠2=∠C,再结合三角形内角和定理进而可得2(∠B+∠C)+∠EAG=180°,从而可求∠EAG.
解答:
解:在△ABC中,∠BAC=120°,
∴∠B+∠C=180°-120°=60°,
∵DE是AB的垂直平分线,
∴EB=EA,
∴∠1=∠B,
同理可得∠2=∠C,
又∵∠1+∠2+∠B+∠C+∠EAG=180°,
∴2(∠B+∠C)+∠EAG=180°,
∴∠EAG=60°.
∴∠B+∠C=180°-120°=60°,
∵DE是AB的垂直平分线,
∴EB=EA,
∴∠1=∠B,
同理可得∠2=∠C,
又∵∠1+∠2+∠B+∠C+∠EAG=180°,
∴2(∠B+∠C)+∠EAG=180°,
∴∠EAG=60°.
点评:本题考查了线段垂直平分线的性质,解题的关键是先求出∠B+∠C.
练习册系列答案
相关题目