题目内容

如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为36,则BE=


  1. A.
    4
  2. B.
    5
  3. C.
    6
  4. D.
    9
C
分析:作BF⊥CD交CD的延长线于点F,根据条件可证得∠ABE=∠CBF,且由已知∠AEB=∠CFB=90°,AB=BC,所以△ABE≌△CBF,可得BE=BF;四边形ABCD的面积等于新正方形FBED的面积(需证明是正方形),即可得BE的长度.
解答:解:过B点作BF⊥CD,与DC的延长线交于F点,
∵∠ABC=∠CDA=90°,BF⊥CD,
∴∠ABE+∠EBC=∠CBF+∠EBC,∴∠ABE=∠CBF;
又∵BE⊥AD,BF⊥DF,且AB=BC,
∴△ABE≌△CBF,即BE=BF;
∵BE⊥AD,∠CDA=90°,BE=BF,
∴四边形BEDF为正方形;
由以上得四边形ABCD的面积等于正方形BEDF的面积,即等于36,
∴BE2=36,即BE=6.
故选C.
点评:此题主要考查直角三角形全等的判定,运用割补法把原四边形转化为正方形,其面积保持不变,所求BE就是正方形的边长.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网