题目内容
如图,?ABCD的对角线AC,BD相交于O,EF过点O与AD,BC分别相交于E,F,若AB=4,BC=5,OE=1.5,那么四边形EFCD的周长为
- A.16
- B.14
- C.12
- D.10
C
分析:根据平行四边形的对边相等得:CD=AB=4,AD=BC=5.再根据平行四边形的性质和对顶角相等可以证明:△AOE≌△COF.根据全等三角形的性质,得:OF=OE=1.5,CF=AE,故四边形EFCD的周长为CD+EF+AD=12.
解答:∵四边形ABCD是平行四边形,
∴CD=AB=4,AD=BC=5,OA=OC,AD∥BC,
∴∠EAO=∠FCO,∠AEO=∠CFO,
在△AOE和△COF中,
,
∴△AOE≌△COF(AAS),
∴OF=OE=1.5,CF=AE,
故四边形EFCD的周长为CD+EF+ED+FC=CD+EF+AE+ED=CD+EF+AD=12.
故选C.
点评:能够根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键.
分析:根据平行四边形的对边相等得:CD=AB=4,AD=BC=5.再根据平行四边形的性质和对顶角相等可以证明:△AOE≌△COF.根据全等三角形的性质,得:OF=OE=1.5,CF=AE,故四边形EFCD的周长为CD+EF+AD=12.
解答:∵四边形ABCD是平行四边形,
∴CD=AB=4,AD=BC=5,OA=OC,AD∥BC,
∴∠EAO=∠FCO,∠AEO=∠CFO,
在△AOE和△COF中,
∴△AOE≌△COF(AAS),
∴OF=OE=1.5,CF=AE,
故四边形EFCD的周长为CD+EF+ED+FC=CD+EF+AE+ED=CD+EF+AD=12.
故选C.
点评:能够根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键.
练习册系列答案
相关题目