题目内容
解不等式组:
如右图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么∠BAO与∠ABO之间的大小关系一定为( )
A. 互余 B. 互补 C. 相等 D. 不等
某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示.根据图象解答下列问题:
(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中水量为多少升?
(2)已知洗衣机的排水速度为每分钟19升.
①求排水时洗衣机中的水量y(升)与时间x(分钟)与之间的关系式;
②如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量.
如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是
A. ∠A=∠D B. AB=DC C. ∠ACB=∠DBC D. AC=BD
某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,井建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=
(1)当8<t≤24时,求P关于t的函数解析式;
(2)设第t个月销售该原料药的月毛利润为w(单位:万元)
①求w关于t的函数解析式;
②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.
一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是_____.
下列命题正确的是( )
A. 对角线相等的四边形是平行四边形
B. 对角线相等的四边形是矩形
C. 对角线互相垂直的平行四边形是菱形
D. 对角线互相垂直且相等的四边形是正方形
如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为( )
A. 4.5 B. 4 C. 3 D. 2
如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.
(1)求证:PG与⊙O相切;
(2)若=,求的值;
(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.