题目内容
小红用一张周长为40cm的长方形白纸做一张贺卡,白纸的四周涂上宽为2cm的彩色花边,彩色花边的面积是
64
64
cm2.分析:设原来长方形的长为xcm,则宽为(20-x)cm,则中间部分的长为(x-4)cm,宽为(20-x-4)cm,则花边部分的面积等于原来的面积减去中间部分的面积.
解答:解:设长方形白纸长为xcm,则宽为(20-x)cm,中间部分的长为(x-4)cm,宽为(20-x-4)cm,
根据题意得
长方形白纸的面积为x(20-x),中间部分的面积为(x-4)(20-x-4)
所以彩色花边的面积为x(20-x)-(x-4)(20-x-4)=64
答:彩色花边的面积的面积为64cm2.
根据题意得
长方形白纸的面积为x(20-x),中间部分的面积为(x-4)(20-x-4)
所以彩色花边的面积为x(20-x)-(x-4)(20-x-4)=64
答:彩色花边的面积的面积为64cm2.
点评:本题主要考查一元二次方程的应用,关键在于理解清楚题意找出等量关系,即:花边部分的面积=总面积-中间部分的面积;已知花边部分的面积,而中间部分的面积又不定,只需求出中间部分面积的最值与其比较即可.
练习册系列答案
相关题目