题目内容
在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为
(0°<
<180°),得到△A′B′C.
(1)如图(1),当AB∥CB′时,设A′B′与CB相交于点D.证明:△A′CD是等边三角形;
![]()
(2)如图(2),连接A′A、B′B,设△ACA′ 和△BCB′ 的面积分别为S△ACA′ 和S△BCB′.求证:S△ACA′ :S△BCB′ =1:3;
![]()
证明过程见解析
解析:(1)∵AB∥CB′,∴∠B=∠BC B′=30°,∴∠A′CD=60°,
又∵∠A′=60°,∴∠A′CD=∠A′=∠A′DC=60°,∴△A′CD是等边三角形;…………4分
(2)∵AC=A′C,BC=B′C,∴
又∵∠ACA′=∠BCB′,
∴△ACA′∽△BCB′,…………6分
∵
相似比为
,
∴S△ACA′ :S△BCB′ =1:3;…………8分
(1)当AB∥CB1时,∠BCB1=∠B=∠B1=30°,则∠A1CD=90°-∠BCB1=60°,∠A1DC=∠BCB1+∠B1=60°,可证:△A1CD是等边三角形;
(2)由旋转的性质可证△ACA1和△BCB1,利用相似三角形的面积比等于相似比的平方求解;
练习册系列答案
相关题目
在△ABC中,AC=8,BC=6,AB=10,则△ABC的外接圆半径长为( )
| A、10 | B、5 | C、6 | D、4 |