题目内容


如图,已知:在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD.图中的CE、BD有怎样的大小和位置关系?试证明你的结论.


【考点】全等三角形的判定与性质.

【分析】根据全等三角形的判定得出△BAD≌△CAE,进而得出∠ABD=∠ACE,求出∠DBC+∠DCB=∠DBC+∠ACE+∠ACB即可得出答案.

【解答】解:BD=CE,BD⊥CE;

理由:∵∠BAC=∠DAE=90°,

∴∠BAC+∠CAD=∠DAE+∠CAD,

即∠BAD=∠CAE,

在△BAD和△CAE中,

∴△BAD≌△CAE(SAS),

∴BD=CE;

∵△BAD≌△CAE,

∴∠ABD=∠ACE,

∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,

∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,

则BD⊥CE.

【点评】此题主要考查了全等三角形的判定与性质和三角形内角和定理等知识,根据已知得出△BAD≌△CAE是解题关键

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网