题目内容
如图,下列语句中,描述错误的是( )
A. 直线AB与直线OP相交于点O B. 点P在直线AB上
C. ∠AOP与∠BOP互为补角 D. 点O在直线AB上
每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,
①写出A、B、C的坐标.
②以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出A1、B1、C1的坐标.
如图所示,钻石型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的完整图形是一个轴对称图形.满足题意的涂色方式有几种.( )
A. 1个 B. 2个 C. 3个 D. 4个
计算:
(1)2×(﹣4)2+6﹣(﹣12)÷(﹣3)
(2)(﹣12)×(﹣﹣)﹣|﹣5|
我国载人飞船“神舟十一号”与“天宫二号”成功对接后,以每小时约28000千米的速度在太空飞行,将28000用科学记数法表示应为_____
如图1,正方形ABCD中,AB=4cm,点P从点D出发沿DA向点A匀速运动,速度是1cm/s,同时,点Q从点A出发沿AB方向,向点B匀速运动,速度是2cm/s,连接PQ、CP、CQ,设运动时间为t(s)(0<t<2)
(1)是否存在某一时刻t,使得PQ∥BD?若存在,求出t值;若不存在,说明理由
(2)设△PQC的面积为s(cm2),求s与t之间的函数关系式;
(3)如图2,连接AC,与线段PQ相交于点M,是否存在某一时刻t,使S△QCM:S△PCM=3:5?若存在,求出t值;若不存在,说明理由.
小明和小刚做游戏一个不透明的布袋里装有4个大小、质地均相同的乒乓球,球上分别标有数字1,2,3,4,随机从布袋中摸出一个乒乓球,记下数字后放回布袋里,再随机从布袋中摸出一个乒乓球,若这两个乒乓球上的数字之和能被4整除则小明赢;若两个乒乓球上的数字之和能被5整除则小刚赢;这个一个对游戏双方公平的游戏吗?请列表格或画树状图说明理由.
已知:如图,直线与x轴负半轴交于点A,与y轴正半轴交于点B,线段OA的长是方程的一个根,请解答下列问题:
求点B坐标;
双曲线与直线AB交于点C,且,求k的值;
在的条件下,点E在线段AB上,,直线轴,垂足为点,点M在直线l上,坐标平面内是否存在点N,使以C、E、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
方程x(x﹣1)=x的解是( )
A. x=0 B. x=2 C. x1=0,x2=1 D. x1=0,x2=2