题目内容
如图,正方形 ABCD的边长为1,以A为圆心,1为半径的圆与直线BC的位置关系怎样?以A为圆心,半径为多少时的圆与直线BD相切?
(题文)如图,四边形ABCD中,AB//CD,AC平分∠BAD,CE//AD交AB于E.
求证:四边形AECD是菱形.
已知一次函数y=kx+b与y=﹣2kx(k≠0)的图象相交于点P(1,﹣4).
(1)求k、b的值;
(2)Q点(m,n)在函数y=kx+b的图象上.
①求2n﹣4m+9的值;
②若一次函数y=x的图象经过点Q,求点Q的坐标.
某水果超市以每千克3元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额 y(元)与销售量x(千克)之间的关系如图所示.若该水果超市销售此种水果的利润为110元,则销售量为( )
A. 130千克 B. 120千克 C. 100千克 D. 80千克
阅读下面材料.
在数学课上,老师请同学思考如下问题:
已知:如图①,在△ABC中,∠A=90°.
图①
求作:⊙P,使得点P在边AC上,且⊙P与AB,BC都相切.
小轩的主要作法如下:
如图②,
图②
(1)作∠ABC的平分线BF,与AC交于点P;
(2)以P为圆心,AP长为半径作⊙P,则⊙P即为所求.
老师说:“小轩的作法正确.”
请回答:⊙P与BC相切的依据是 ____.
已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是【 】
A. 相切 B. 相离 C. 相离或相切 D. 相切或相交
甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑摩托车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离(千米)与(时间)之间的函数关系图像
(1)求甲从B地返回A地的过程中,与之间的函数关系式,并写出自变量的取值范围;
(2)若乙出发后2小时和甲相遇,求乙从A地到B地用了多长时间?
如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行
A.8米 B.10米 C.12米 D.14米
已知、、是△ABC三边的长,且满足关系式,则△ABC的形状为___________