题目内容
如图,已知a∥b,CB⊥AB,∠2=54°,则∠1= 度
从2,3,4,5中任意选两个数,记作和,那么点(,)在函数图象上的概率是( )
A、 B、 C、 D、
如图,在□ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是_________(结果保留π).
如图1,抛物线(),与轴的交于A、B两点(点A在点B的右侧),与轴的正半轴交于点C,顶点为D.
(1)求顶点D的坐标(用含的代数式表示);
(2)若以AD为直径的圆经过点C.
①求抛物线的解析式;
②如图2,点E是y轴负半轴上的一点,连结BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;
③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.
解方程
若式子有意义,则实数的取值范围是 .
实数a、b在数轴上的位置如图所示,则a与b的大小关系是
A.a > b B.a < b C.a = b D.不能判断
已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上且坐标是(0,2),点C1、E1、E2、C2、E3、E4、C3在x轴上,C1的坐标是(1,0).B1C1∥B2C2∥B3C3,以此继续下去,则点A2014到x轴的距离是 .
解方程: